martes, 2 de julio de 2013

Matemáticas y mundo físico (y III): los pensamientos de dios



En las dos entregas anteriores de esta serie (III) hemos visto dos respuestas que representan los extremos de una misma cuestión que está en el centro mismo de la metamatemática: su apriorismo. Pero la gran incógnita, el gran misterio subyacente que estos planteamientos abordan sólo tangencialmente es por qué las matemáticas son útiles para representar lo que ocurre en el mundo físico; en otras palabras: ¿es el universo inherentemente matemático o son las matemáticas una construcción de la mente humana?

Fijémonos que responder a esta pregunta suponer sacar a las matemáticas de sí mismas. Me explico. Suponiendo que aplicamos una lógica adecuada y partiendo de algunos axiomas asimismo adecuados podemos construir toda una serie de enunciados lógicamente consistentes que formen un sistema que si bien puede no ser completo (Gödel), se puede afirmar de él que sus enunciados son verdaderos en cierto sentido. El valor de verdad de cualquier enunciado matemático dependerá de sus consistencia con el resto de enunciados ya probados, y mostrar esta consistencia es lo que se llama prueba matemática. En este contexto un enunciado matemático está “dentro de las matemáticas”.


Sin embargo usar una técnica matemática, esto es, un subconjunto determinado de enunciados matemáticos relacionados estrechamente entre sí, para obtener una respuesta a una pregunta que se realiza desde “fuera” de las matemáticas es lo que se llama matemática aplicada. Y es en el mismo hecho de poder sacar las matemáticas de sí mismas donde estriba el misterio. 

Sigue leyendo en el Cuaderno de Cultura Científica